1,105 research outputs found

    Neural architecture for echo suppression during sound source localization based on spiking neural cell models

    Get PDF
    Zusammenfassung Diese Arbeit untersucht die biologischen Ursachen des psycho-akustischen Präzedenz Effektes, der Menschen in die Lage versetzt, akustische Echos während der Lokalisation von Schallquellen zu unterdrücken. Sie enthält ein Modell zur Echo-Unterdrückung während der Schallquellenlokalisation, welches in technischen Systemen zur Mensch-Maschine Interaktion eingesetzt werden kann. Die Grundlagen dieses Modells wurden aus eigenen elektrophysiologischen Experimenten an der Mongolischen Wüstenrennmaus gewonnen. Die dabei erstmalig an der Wüstenrennmaus erzielten Ergebnisse, zeigen ein besonderes Verhalten spezifischer Zellen im Dorsalen Kern des Lateral Lemniscus, einer dedizierten Region des auditorischen Hirnstammes. Die dort sichtbare Langzeithemmung scheint die Grundlage für die Echounterdrückung in höheren auditorischen Zentren zu sein. Das entwickelte Model war in der Lage dieses Verhalten nachzubilden, und legt die Vermutung nahe, dass eine starke und zeitlich präzise Hyperpolarisation der zugrundeliegende physiologische Mechanismus dieses Verhaltens ist. Die entwickelte Neuronale Modellarchitektur modelliert das Innenohr und fünf wesentliche Kerne des auditorischen Hirnstammes in ihrer Verbindungsstruktur und internen Dynamik. Sie stellt einen neuen Typus neuronaler Modellierung dar, der als Spike-Interaktionsmodell (SIM) bezeichnet wird. SIM nutzen die präzise räumlich-zeitliche Interaktion einzelner Aktionspotentiale (Spikes) für die Kodierung und Verarbeitung neuronaler Informationen. Die Basis dafür bilden Integrate-and-Fire Neuronenmodelle sowie Hebb'sche Synapsen, welche um speziell entwickelte dynamische Kernfunktionen erweitert wurden. Das Modell ist in der Lage, Zeitdifferenzen von 10 mykrosekunden zu detektieren und basiert auf den Prinzipien der zeitlichen und räumlichen Koinzidenz sowie der präzisen lokalen Inhibition. Es besteht ausschließlich aus Elementen einer eigens entwickelten Neuronalen Basisbibliothek (NBL) die speziell für die Modellierung verschiedenster Spike- Interaktionsmodelle entworfen wurde. Diese Bibliothek erweitert die kommerziell verfügbare dynamische Simulationsumgebung von MATLAB/SIMULINK um verschiedene Modelle von Neuronen und Synapsen, welche die intrinsischen dynamischen Eigenschaften von Nervenzellen nachbilden. Die Nutzung dieser Bibliothek versetzt sowohl den Ingenieur als auch den Biologen in die Lage, eigene, biologisch plausible, Modelle der neuronalen Informationsverarbeitung ohne detaillierte Programmierkenntnisse zu entwickeln. Die grafische Oberfläche ermöglicht strukturelle sowie parametrische Modifikationen und ist in der Lage, den Zeitverlauf mikroskopischer Zellpotentiale aber auch makroskopischer Spikemuster während und nach der Simulation darzustellen. Zwei grundlegende Elemente der Neuronalen Basisbibliothek wurden zur Implementierung als spezielle analog-digitale Schaltungen vorbereitet. Erste Silizium Implementierungen durch das Team des DFG Graduiertenkollegs GRK 164 konnten die Möglichkeit einer vollparallelen on line Verarbeitung von Schallsignalen nachweisen. Durch Zuhilfenahme des im GRK entwickelten automatisierten Layout Generators wird es möglich, spezielle Prozessoren zur Anwendung biologischer Verarbeitungsprinzipien in technischen Systemen zu entwickeln. Diese Prozessoren unterscheiden sich grundlegend von den klassischen von Neumann Prozessoren indem sie räumlich und zeitlich verteilte Spikemuster, anstatt sequentieller binärer Werte zur Informationsrepräsentation nutzen. Sie erweitern das digitale Kodierungsprinzip durch die Dimensionen des Raumes (2 dimensionale Nachbarschaft) der Zeit (Frequenz, Phase und Amplitude) sowie der zeitlichen Dynamik analoger Potentialverläufe. Diese Dissertation besteht aus sieben Kapiteln, welche den verschiedenen Bereichen der Computational Neuroscience gewidmet sind. Kapitel 1 beschreibt die Motivation dieser Arbeit welche aus der Absicht rühren, biologische Prinzipien der Schallverarbeitung zu erforschen und für technische Systeme während der Interaktion mit dem Menschen nutzbar zu machen. Zusätzlich werden fünf Gründe für die Nutzung von Spike-Interaktionsmodellen angeführt sowie deren neuartiger Charakter beschrieben. Kapitel 2 führt die biologischen Prinzipien der Schallquellenlokalisation und den psychoakustischen Präzedenz Effekt ein. Aktuelle Hypothesen zur Entstehung dieses Effektes werden anhand ausgewählter experimenteller Ergebnisse verschiedener Forschungsgruppen diskutiert. Kapitel 3 beschreibt die entwickelte Neuronale Basisbibliothek und führt die einzelnen neuronalen Simulationselemente ein. Es erklärt die zugrundeliegenden mathematischen Funktionen der dynamischen Komponenten und beschreibt deren generelle Einsetzbarkeit zur dynamischen Simulation spikebasierter Neuronaler Netzwerke. Kapitel 4 enthält ein speziell entworfenes Modell des auditorischen Hirnstammes beginnend mit den Filterkaskaden zur Simulation des Innenohres, sich fortsetzend über mehr als 200 Zellen und 400 Synapsen in 5 auditorischen Kernen bis zum Richtungssensor im Bereich des auditorischen Mittelhirns. Es stellt die verwendeten Strukturen und Parameter vor und enthält grundlegende Hinweise zur Nutzung der Simulationsumgebung. Kapitel 5 besteht aus drei Abschnitten, wobei der erste Abschnitt die Experimentalbedingungen und Ergebnisse der eigens durchgeführten Tierversuche beschreibt. Der zweite Abschnitt stellt die Ergebnisse von 104 Modellversuchen zur Simulationen psycho-akustischer Effekte dar, welche u.a. die Fähigkeit des Modells zur Nachbildung des Präzedenz Effektes testen. Schließlich beschreibt der letzte Abschnitt die Ergebnisse der 54 unter realen Umweltbedingungen durchgeführten Experimente. Dabei kamen Signale zur Anwendung, welche in normalen sowie besonders stark verhallten Räumen aufgezeichnet wurden. Kapitel 6 vergleicht diese Ergebnisse mit anderen biologisch motivierten und technischen Verfahren zur Echounterdrückung und Schallquellenlokalisation und führt den aktuellen Status der Hardwareimplementierung ein. Kapitel 7 enthält schließlich eine kurze Zusammenfassung und einen Ausblick auf weitere Forschungsobjekte und geplante Aktivitäten. Diese Arbeit möchte zur Entwicklung der Computational Neuroscience beitragen, indem sie versucht, in einem speziellen Anwendungsfeld die Lücke zwischen biologischen Erkenntnissen, rechentechnischen Modellen und Hardware Engineering zu schließen. Sie empfiehlt ein neues räumlich-zeitliches Paradigma der dynamischen Informationsverarbeitung zur Erschließung biologischer Prinzipien der Informationsverarbeitung für technische Anwendungen.This thesis investigates the biological background of the psycho-acoustical precedence effect, enabling humans to suppress echoes during the localization of sound sources. It provides a technically feasible and biologically plausible model for sound source localization under echoic conditions, ready to be used by technical systems during man-machine interactions. The model is based upon own electro-physiological experiments in the mongolian gerbil. The first time in gerbils obtained results reveal a special behavior of specific cells of the dorsal nucleus of the lateral lemniscus (DNLL) - a distinct region in the auditory brainstem. The explored persistent inhibition effect of these cells seems to account for the base of echo suppression at higher auditory centers. The developed model proved capable to duplicate this behavior and suggests, that a strong and timely precise hyperpolarization is the basic mechanism behind this cell behavior. The developed neural architecture models the inner ear as well as five major nuclei of the auditory brainstem in their connectivity and intrinsic dynamics. It represents a new type of neural modeling described as Spike Interaction Models (SIM). SIM use the precise spatio-temporal interaction of single spike events for coding and processing of neural information. Their basic elements are Integrate-and-Fire Neurons and Hebbian synapses, which have been extended by specially designed dynamic transfer functions. The model is capable to detect time differences as small as 10 mircrosecondes and employs the principles of coincidence detection and precise local inhibition for auditory processing. It consists exclusively of elements of a specifically designed Neural Base Library (NBL), which has been developed for multi purpose modeling of Spike Interaction Models. This library extends the commercially available dynamic simulation environment of MATLAB/SIMULINK by different models of neurons and synapses simulating the intrinsic dynamic properties of neural cells. The usage of this library enables engineers as well as biologists to design their own, biologically plausible models of neural information processing without the need for detailed programming skills. Its graphical interface provides access to structural as well as parametric changes and is capable to display the time course of microscopic cell parameters as well as macroscopic firing pattern during simulations and thereafter. Two basic elements of the Neural Base Library have been prepared for implementation by specialized mixed analog-digital circuitry. First silicon implementations were realized by the team of the DFG Graduiertenkolleg GRK 164 and proved the possibility of fully parallel on line processing of sounds. By using the automated layout processor under development in the Graduiertenkolleg, it will be possible to design specific processors in order to apply theprinciples of distributed biological information processing to technical systems. These processors differ from classical von Neumann processors by the use of spatio temporal spike pattern instead of sequential binary values. They will extend the digital coding principle by the dimensions of space (spatial neighborhood), time (frequency, phase and amplitude) as well as the dynamics of analog potentials and introduce a new type of information processing. This thesis consists of seven chapters, dedicated to the different areas of computational neuroscience. Chapter 1: provides the motivation of this study arising from the attempt to investigate the biological principles of sound processing and make them available to technical systems interacting with humans under real world conditions. Furthermore, five reasons to use spike interaction models are given and their novel characteristics are discussed. Chapter 2: introduces the biological principles of sound source localization and the precedence effect. Current hypothesis on echo suppression and the underlying principles of the precedence effect are discussed by reference to a small selection of physiological and psycho-acoustical experiments. Chapter 3: describes the developed neural base library and introduces each of the designed neural simulation elements. It also explains the developed mathematical functions of the dynamic compartments and describes their general usage for dynamic simulation of spiking neural networks. Chapter 4: introduces the developed specific model of the auditory brainstem, starting from the filtering cascade in the inner ear via more than 200 cells and 400 synapses in five auditory regions up to the directional sensor at the level of the auditory midbrain. It displays the employed parameter sets and contains basic hints for the set up and configuration of the simulation environment. Chapter 5: consists of three sections, whereas the first one describes the set up and results of the own electro-physiological experiments. The second describes the results of 104 model simulations, performed to test the models ability to duplicate psycho-acoustical effects like the precedence effect. Finally, the last section of this chapter contains the results of 54 real world experiments using natural sound signals, recorded under normal as well as highly reverberating conditions. Chapter 6: compares the achieved results to other biologically motivated and technical models for echo suppression and sound source localization and introduces the current status of silicon implementation. Chapter 7: finally provides a short summary and an outlook toward future research subjects and areas of investigation. This thesis aims to contribute to the field of computational neuroscience by bridging the gap between biological investigation, computational modeling and silicon engineering in a specific field of application. It suggests a new spatio-temporal paradigm of information processing in order to access the capabilities of biological systems for technical applications

    Sustaining Improved Outcomes: A Toolkit

    Get PDF
    Offers a framework for designing and implementing a plan to sustain organizational improvements by strengthening factors that affect sustainability, including perceived value, monitoring and feedback, leadership, shared models, community fit, and funding

    Momentum-Resolved View of Electron-Phonon Coupling in Multilayer WSe2_2

    Full text link
    We investigate the interactions of photoexcited carriers with lattice vibrations in thin films of the layered transition metal dichalcogenide (TMDC) WSe2_2. Employing femtosecond electron diffraction with monocrystalline samples and first principle density functional theory calculations, we obtain a momentum-resolved picture of the energy-transfer from excited electrons to phonons. The measured momentum-dependent phonon population dynamics are compared to first principle calculations of the phonon linewidth and can be rationalized in terms of electronic phase-space arguments. The relaxation of excited states in the conduction band is dominated by intervalley scattering between Σ\Sigma valleys and the emission of zone-boundary phonons. Transiently, the momentum-dependent electron-phonon coupling leads to a non-thermal phonon distribution, which, on longer timescales, relaxes to a thermal distribution via electron-phonon and phonon-phonon collisions. Our results constitute a basis for monitoring and predicting out of equilibrium electrical and thermal transport properties for nanoscale applications of TMDCs

    DHT-OLSR

    Get PDF
    L'auto-organisation est considérée comme un élément important de l'architecture Internet dans un futur proche. Un défi majeur concernant l'intégration de cet élément est l'accomplissement du routage mobile ad hoc à grande échelle. Ce rapport propose une nouvelle solution dans ce domaine, DHT-OLSR

    Functional and structural properties of dentate granule cells with hilar basal dendrites in mouse entorhino-hippocampal slice cultures

    Get PDF
    During postnatal development hippocampal dentate granule cells (GCs) often extend dendrites from the basal pole of their cell bodies into the hilar region. These so-called hilar basal dendrites (hBD) usually regress with maturation. However, hBDs may persist in a subset of mature GCs under certain conditions (both physiological and pathological). The functional role of these hBD-GCs remains not well understood. Here, we have studied hBD-GCs in mature (≥18 days in vitro) mouse entorhino-hippocampal slice cultures under control conditions and have compared their basic functional properties (basic intrinsic and synaptic properties) and structural properties (dendritic arborisation and spine densities) to those of neighboring GCs without hBDs in the same set of cultures. Except for the presence of hBDs, we did not detect major differences between the two GC populations. Furthermore, paired recordings of neighboring GCs with and without hBDs did not reveal evidence for a heavy aberrant GC-to-GC connectivity. Taken together, our data suggest that in control cultures the presence of hBDs on GCs is neither sufficient to predict alterations in the basic functional and structural properties of these GCs nor indicative of a heavy GC-to-GC connectivity between neighboring GCs

    Inhibiting the inhibition

    Get PDF
    The precedence effect describes the phenomenon whereby echoes are spatially fused to the location of an initial sound by selectively suppressing the directional information of lagging sounds (echo suppression). Echo suppression is a prerequisite for faithful sound localization in natural environments but can break down depending on the behavioral context. To date, the neural mechanisms that suppress echo directional information without suppressing the perception of echoes themselves are not understood. We performed in vivo recordings in Mongolian gerbils of neurons of the dorsal nucleus of the lateral lemniscus (DNLL), a GABAergic brainstem nucleus that targets the auditory midbrain, and show that these DNLL neurons exhibit inhibition that persists tens of milliseconds beyond the stimulus offset, so-called persistent inhibition (PI). Using in vitro recordings, we demonstrate that PI stems from GABAergic projections from the opposite DNLL. Furthermore, these recordings show that PI is attributable to intrinsic features of this GABAergic innervation. Implementation of these physiological findings into a neuronal model of the auditory brainstem demonstrates that, on a circuit level, PI creates an enhancement of responsiveness to lagging sounds in auditory midbrain cells. Moreover, the model revealed that such response enhancement is a sufficient cue for an ideal observer to identify echoes and to exhibit echo suppression, which agrees closely with the percepts of human subjects

    How to Find More Supernovae with Less Work: Object Classification Techniques for Difference Imaging

    Get PDF
    We present the results of applying new object classification techniques to difference images in the context of the Nearby Supernova Factory supernova search. Most current supernova searches subtract reference images from new images, identify objects in these difference images, and apply simple threshold cuts on parameters such as statistical significance, shape, and motion to reject objects such as cosmic rays, asteroids, and subtraction artifacts. Although most static objects subtract cleanly, even a very low false positive detection rate can lead to hundreds of non-supernova candidates which must be vetted by human inspection before triggering additional followup. In comparison to simple threshold cuts, more sophisticated methods such as Boosted Decision Trees, Random Forests, and Support Vector Machines provide dramatically better object discrimination. At the Nearby Supernova Factory, we reduced the number of non-supernova candidates by a factor of 10 while increasing our supernova identification efficiency. Methods such as these will be crucial for maintaining a reasonable false positive rate in the automated transient alert pipelines of upcoming projects such as PanSTARRS and LSST.Comment: 25 pages; 6 figures; submitted to Ap

    Millimagnitude Optical Photometry for the Transiting Planetary Candidate OGLE-TR-109

    Full text link
    We present precise V-band photometry for the low-amplitude transit candidate star OGLE-TR-109. This is an extreme case among the transiting candidates found by the OGLE group because of the early spectral type of the star (F0V), of the low transit amplitude (A_I=0.008 mag), and of the very short period (P=0.58909 days) of the orbiting companion. Using difference image photometry, we are able to achieve millimagnitude errors in the individual data points. One transit of this star is well defined in our light curve. This confirms the OGLE detection and rules out the possibility of a false positive. The measurement of this transit allows to refine the transit amplitude (A_V=0.006 +/- 0.001 mag), and the ephemerides for this interesting system, as well as the radius of the possible orbiting companion (R_P=0.90 +/- 0.09 ~R_J), and the inclination of the orbit (i=77 +/- 5 deg). Two other transits observed at lower S/N confirm the period of this system measured by OGLE. There is no evidence for a blend of the F-type main sequence star with a redder eclipsing binary, or for secondary transits in the present observations. The absence of ellipsoidal modulation in the light curve of the primary rules out a low mass star companion or brown dwarf with M>14 +/- 8 M_J. The remaining possibilities for OGLE-TR-109 are a blend between the F-type star and a binary with a bluer primary star, or a new transiting extrasolar planet.Comment: 24 pages (including figures) submitteed to ApJ, Accepted. 1 replacement (updated references

    Evidence for a Pathophysiological Role of Keratinocyte-Derived Type III Interferon (IFNλ) in Cutaneous Lupus Erythematosus

    Get PDF
    Type I IFNs (IFNα/β) have been shown to have a central role in the pathophysiology of lupus erythematosus (LE). The recently discovered type III IFNs (IFNλ1/IL29, IFNλ2/IL28a, IFNλ3/IL28b) share several functional similarities with type I IFNs, particularly in antiviral immunity. As IFNλs act primarily on epithelial cells, we investigated whether type III IFNs might also have a role in the pathogenesis of cutaneous LE (CLE). Our investigations demonstrate that IFNλ and the IFNλ receptor were strongly expressed in the epidermis of CLE skin lesions and related autoimmune diseases (lichen planus and dermatomyositis). Significantly enhanced IFNλ1 could be measured in the serum of CLE patients with active skin lesions. Functional analyses revealed that human keratinocytes are able to produce high levels of IFNλ1 but only low amounts of IFNα/β/γ in response to immunostimulatory nuclear acids, suggesting that IFNλ is a major IFN produced by these cells. Exposure of human keratinocytes to IFNλ1 induced the expression of several proinflammatory cytokines, including CXCL9 (CXC-motiv ligand 9), which drive the recruitment of immune cells and are associated with the formation of CLE skin lesions. Our results provide evidence for a role of type III IFNs in not only antiviral immunity but also autoimmune diseases of the skin
    • …
    corecore